
memoQ Internal

Krzysztof Józefowicz

Improving quality of Machine
Translation output for tag heavy text

Előadó megjegyzései
Bemutató megjegyzései

memoQ Internal

Előadó megjegyzései
Bemutató megjegyzései
To start, let me quickly clarify what I mean by “tag heavy text” in the title. Simply, it’s a source where sentences are rich in tags – also within/inside of sentences. Good examples are: XML files or software property files with placeholders.

memoQ Internal

Előadó megjegyzései
Bemutató megjegyzései
To start, let me quickly clarify what I mean by “tag heavy text” in the title. Simply, it’s a source where sentences are rich in tags – also within/inside of sentences. Good examples are: XML files or software property files with placeholders.

memoQ Internal

Krzysztof Józefowicz

Improving quality of Machine
Translation output for tag heavy text

Előadó megjegyzései
Bemutató megjegyzései
Also, let me give you some context for this talk.
What I will present, started about 2 years ago; when my group received a request for translation of a large software documentation project (350K words) authored in xml - full of tags within segments.
For this documentation project, as a reference, we already had user interface part translated by human translators.

We had to deliver it fast, but we didn’t have capacity and time to translate it by human translators, so we decided to apply machine translation on it. Our goal was to get high quality MT translations with as little “post editing” as possible.

First, I thought we can just take the source xml files and using an XML filter import them to memoq then run MT translation on them using Google Translate generic engine.

Quickly I discovered that the resulting translations were linguistically very poor quality. I noticed that protected tags in source break segments and that was resulting in grammatically incorrect translations.

Also, the Google Translate generic engine gave inaccurate translations for our very domain specific text.

To answer these issues, I developed a process that deals with tags in source and trained our own NMT models with Google AutoML Translate that can be accessed in memoq using Google Translation Advanced plugin.

This is an ongoing project with updates every month.
After the initial Machine translation, QA, Review and post editing we confirmed translations into a separate TM.
On subsequent iterations we pre-translate first with this TM and use NMT for delta.

memoQ Internal

Tags in source

1

Within sentence tags in source text are
a problem for MT.

Problems with MT

Validation and postediting

3

QA and postediting of MT
output is high cost.

Quality of MT output

2

For very domain specific source text,
off the shelf, generic MT models
provide inaccurate translations.

Előadó megjegyzései
Bemutató megjegyzései
While working on a workflow for this project around memoQ and MT I reached the following 3 key conclusions

Tags within segments are a problem for MT.

For domain specific source text, off the shelf, generic MT models provide inaccurate translations.

As a result of point 1 & 2 the QA and postediting of MT output for the tag heavy text is very high cost.

So, let’s analyse the problems a bit deeper

memoQ Internal

Use both formatting and tags
vs.

Use text and formatting

Tags in source and MT results

Előadó megjegyzései
Bemutató megjegyzései
First let’s look at the MT settings related to handling of tags in memoq (This is as of 9.12 version of memoQ (the last LTS))

In the MT profile you have 3 options for how memoQ should trat the tags:
Use plain text only – this omits the tags in translated text

The Use text and formatting option puts the tags at the end of a translated sentence.

The Use both formatting and tags option puts the tags in seemingly appropriate places, but the text runs around the tags are translated independently, so the result is garbage

Given the size of the source and the goal of limiting postediting efforts I decided to use Both formatting and tags setting (the one that preserves the tag position)

memoQ Internal

Tags in source and MT results

Előadó megjegyzései
Bemutató megjegyzései
But,.. When you chooses the Both formatting and tags setting in your MT profile you run into another problem. Tags inside of the text kind of sub-segment the sentence on those tags
You can see that clearly here - text around the tags is translated without the context of the whole sentence.
For comparison I added below the same sentence without any tags. As you can see translations are very different. Needles to say the ones below are the correct ones.

By accident I discovered that: when a document was imported with the wrong filter, and tags were shown as plain text (not protected), the resulting translations were far better.

However, when your tags are unprotected their content (what's between triangle brackets), often got over-translated by MT.

Then I had the idea – what happens if we remove the tags (now unprotected tags) altogether? I experimented with changing tags into unique numbers and symbols and the result was great. MT produced grammatically correct sentences, it preserved the replacement symbols and numbers in the right places and the sentences were even more readable than with the original tags.
�

memoQ Internal

Quality and accuracy of MT

Előadó megjegyzései
Bemutató megjegyzései
The second problem we run into was with the quality/accuracy of the basic or generic MT model.

Default MT model turned out to be too generic. Translations that it returned were too vague and ambiguous.
Generic model didn’t speak the language of this project. It used vocabulary that didn’t fit our domain specific terminology.

Here you can see a comparison between generic model and our trained custom model. Without analyzing it too deep it’s clear that both engines produce different results and it’s the custom trained model that is more accurate.

and lastly the 3rd problem: QA and Validations were super difficult as a result of “within text” tags and poor accuracy of MT output.

memoQ Internal

Normalize tags

1

Replace tags with non-semantic
elements in order not to break the

sentence structure and produce
grammatically correct translations.

Solution

Enhanced QA

3

Use replacements and RegEx checks to
reduce postediting efforts.

Train custom NMT model

2

Aggregate and cleanse TM assets to
train custom, domain specific NMT

models.

Előadó megjegyzései
Bemutató megjegyzései
So now that we analyzed the issues let’s talk about the solution. To answer the problems described so far, I developed a solution consisting of 3 points:

First, I replaced tags with non-semantic, unprotected elements in order not to break the sentence structure and produce grammatically correct translations. This process I call: normalization or homogenization - where original tags are replaced with special symbols or with the so-called hashes (number representations of tags)

Second part of the solution was to aggregate and cleanse our TM assets in order to train our own custom, domain specific, NMT models.

Because my solution involved usage of unprotected replacements, I had to develop a set of enhanced QA checks with regular expressions to catch issues with those tag replacements.

memoQ Internal

Pre-processing step

Original source Normalizing tags

Pre-processed source

Source hash file

Előadó megjegyzései
Bemutató megjegyzései
Let’s start with the first part of the solution which is: normalizing the tags in source.

To do that I developed two Perl scripts (very simple code, about 30 lines). The first script pre-process the source files:

The script takes original source and for the tags within sentences it replaces them with two kinds of replacement tags/symbols depending on the kind of tag.
Other tags that are always around the text (or outside of the text) – can stay in source we don’t need to replace them.

For the essential tags or tags that translator and post-editor need to be aware of (because they mark up user interface references elements that must match a term base) I replace those tags with 6 unique glyphs/symbols (that don’t appear in source text) to represent opening and closing tags.

For other kind of tags, which are called the non-essential tags, the script takes them out of the source and leaves pointers for them in a file. The pointer consists of a hash symbol (#), a number and closing “at” (@) symbol. The pointer numbers (hashes) and the corresponding tags are placed in a so-called hash files. We need to make records of those replacemnt hashes so that post-processing script can place them back in the final, translated files.

memoQ Internal

Pre-processing step

Original source Normalizing tags

Pre-processed source

Source hash file

Előadó megjegyzései
Bemutató megjegyzései
Here we see the original source.

memoQ Internal

Pre-processing step

Original source Normalizing tags

Pre-processed source

Source hash file

Előadó megjegyzései
Bemutató megjegyzései
Here at the top we see a converted (normalized) source and at the bottom the corresponding hash file.

memoQ Internal

Reference tags1

$line =~ s/<windowItem>/† /g;
$line =~ s/<\/windowItem>/ ‡/g;
$line =~ s/<altImage>/¢ /g;
$line =~ s/<\/altImage>/ ¥/g;

<windowName>Regression analysis</windowName>
->
† Regression analysis ‡

Formatting and other non-reference tags2

$line =~ s/\Q$_\E/\#$count\@/;

Click<inGraphic><inDesc><altImage>Select Event</altImage>
->
Click #96@#97@¢ Select Event ¥#98@

Előadó megjegyzései
Bemutató megjegyzései
Here are the fragments of code that explain the kinds of replacements that we do.

As mentioned on the previous slide we have two kinds of tags in our source:

1. Reference tags that quote strings from the user interface. They need to stay in source. They are relevant for terminology QA and post editing. We have 4 pairs of such tags. I change them into special symbols. Glyphs that don’t appear in the source text.

(Note the spaces I add after opening and before closing tag replacement symbols. This is to help with terminology QA.)

2. The other kind of tags are the ones that I call non-essential or not relevant tags., They are mostly formatting and stylistic tags that have no impact on text around them when it comes to translation. They can be safely taken out. I remove them altogether from source and leave a hash pointer in their place. During post post-prcessing those hashes are replaced with original tags.

memoQ Internal

.hsh files3

#26@:<listUnordered eid="p1cl2xhlo12dkqn1dy6a4m8pkvdy">
#27@:<xrefSee link="p0gr5dhxsmzduon1qovu5u440dvj">
#28@:<overrideFetchedText>
#29@:</overrideFetchedText>
#30@:<xrefText/>
#31@:</xrefSee>
#32@:<xrefSee link="n0hx4toju8d2vyn1okwepaok3ucc"
targetComment="Chapter 30, “Types of Data Available for
Targeting,”" targetFile="cintug/xml/chapters/ch-targeting-data.xml">

Előadó megjegyzései
Bemutató megjegyzései
Here is a snippet from one of the hash files

memoQ Internal

Pre-processed source with normalized tags

Előadó megjegyzései
Bemutató megjegyzései
And this is what it looks like in memoQ

You can see here both glyphs that stand for UI Reference tags and the hashes .

Below we see a view of a hash file in memoQ. Notice that we do have here tags that contain translatable text in tag attribute.

Now, again - the tags are gone but tag replacements are unprotected

memoQ Internal

Training custom MT models

Előadó megjegyzései
Bemutató megjegyzései
Now on to the second problem with the poor quality/ accuracy of generic MT models. To solve this problem, I trained our own NMT models with Google AutoML Translate.
We have rather large TM assets, produced by our translators over the last 20+ years. They contain our own very domain specific terminology.

Our TM strategy, is that for each language we have a master TM. Master TM is a collection of all the translations for a language – across all projects that we ever translated. For each project we also have a working TM that is confirmed to master when this project is completed.

Nightly job exports master TM for each language into tmx files and then converts them to tab delimited files (.tsv). TSV files are easier to manipulate (sorting, cleansing, analysis). These files are used to train our custom models in Google AutoML. We retrain the models every 6 months to include latest human translations in the training data.

Note – you can train your own Google AutoML engines using tmx files exported directly from you TMs.

memoQ Internal

Custom model vs. ”Raw” MT

56

48

59
56

49

76

67

75 73

64

0

10

20

30

40

50

60

70

80

IT DE ES FR PL

BLEU Score gains

Raw Google Custom model

IT

Előadó megjegyzései
Bemutató megjegyzései
Here are the results of quality gains for our own models vs. base models using BLEU score. If you have engineering resources on your team, I really think it's worth investing in your own NMT models.
The training and operating Google Cloud is easy, and the usage is rather cheap.

memoQ Internal

Removing extra spaces1

Find and replace extra spaces around replacement tag elements
(e.g., # 67 @ -> #67@)

QA and review in memoQ2

Counting tag replacements
Terminology check against UI

Post-processing3

Resolving tag replacements
Putting tags from hsh files into output xml files

End game

Előadó megjegyzései
Bemutató megjegyzései
Aftyer the source got pre-processed, imported into memoQ and machine translated we have some clean up work to do.

First, we need to get rid of extra spaces that MT adds after every hash symbol and number. I didn't find a way to tell Google or memoQ not to do insert those spaces in the output. Luckily this is easy. It's just a simple find and replace in a global view.

Second, the QA. Since tag replacements (glyphs and hashes) are not protected - when they mismatch between source and target QA formatting checks will not be catch them. I developed RegEs QA checks to validate the tags in the output.

We alos run terminology QA check against Software Reference term base.

As the last step we post-process the files exported from memoQ. The post-processing step merges original tags back into the xml files in places of hashes or replacement symbols.

memoQ Internal

Enhanced QA

Előadó megjegyzései
Bemutató megjegyzései
This RegEx checks for hash mismatches between source and target

memoQ Internal

Enhanced QA

Előadó megjegyzései
Bemutató megjegyzései
This check is to verify that we have the same number of one of the opening tag replacements between source and target.

memoQ Internal

Beautify and normalize tag heavy source

1

Takeaways

Előadó megjegyzései
Bemutató megjegyzései
So, sometimes technology have limits and you need to think out of the box
If you ever find yourself in an unfortunate position of needing to MT tag heavy documents and if you want to greatly reduce the postediting efforts, then I recommend starting with the source by normalizing tags. I showed here one technique, but you might find more cleaver ways of working around the issue.

memoQ Internal

Takeaways

Cleanup and maintain healthy TMs and TBs

2

Előadó megjegyzései
Bemutató megjegyzései
If you have very specific terminology in your TMs and you are unhappy with generic MT model results, then cleanse and maintain a healthy set of TMs to produce good training data for your own MT models.
I would also recommend using memoQ TM maintenance tool. Simply right click on a TM and select Edit then clean variants, duplicates etc… before you export them to tmxs.

memoQ Internal

Takeaways

Train your own NMT models

3

memoQ Internal

Takeaways

Develop advanced QA profiles for normalized rags

4

.

Előadó megjegyzései
Bemutató megjegyzései
If you unprotect the tags or replace them with unprotected replacement symbols you need to develop QA check using Regex to verify that they are not changed by machine translation.

memoQ Internal

Thank you!
Any questions?

Krzysztof.Jozefowicz@jmp.com

Előadó megjegyzései
Bemutató megjegyzései
Other considerations:
	- Pre and post processing as part of automation (before file import and after file export automated task)

What I would like to see in memoq and Google AutoML:
MT suggestions in Translation Results window next to TM fuzzies when they are present for a string. Right now if there a TM fuzzies MT results are not displayed.
Better handling of spaces (not inserting extra spaces after non-word symbol)
Better handling of tags (memoq or Google to emulate my workaround)
Possibility to amend a trained model with new data rather than re-training from scratch

mailto:Krzysztof.Jozefowicz@jmp.com

	1. dia
	2. dia
	3. dia
	4. dia
	5. dia
	6. dia
	7. dia
	8. dia
	9. dia
	10. dia
	11. dia
	12. dia
	13. dia
	14. dia
	15. dia
	Training custom MT models
	Custom model vs. ”Raw” MT
	18. dia
	19. dia
	20. dia
	21. dia
	22. dia
	23. dia
	24. dia
	25. dia

